Dihydro-5,6-benzo[c]cinnoline. This derivative is prepared by electrolysis of benzo[c]cinnoline at -1.1 V in aqueous medium (ethanol-water, 1/2, NaCl 0.2 M). After a two-electron reduction, the solution is cooled, and the dihydro derivative is separated by filtration under argon and characterized by its melting point (122 °C) and its ¹H NMR data. This derivative has been previously prepared by catalytic hydrogenation of benzo[c]cinnoline.4 Acknowledgment. We thank M. T. Compain for her technical assistance. ## Homogeneous Nucleophile Exchange. 2. Silver-Free, Direct Synthesis of Primary Alkyl Sulfonates from Alkyl Halides Roger C. Hahn* Department of Chemistry, Syracuse University, Syracuse, New York 13244-1200 Jan Tompkins Department of Liberal Arts and Sciences, College of Health Related Professions, State University of New York, Health Science Center, Syracuse, New York 13210 Received August 16, 1988 Recently, on finding that homogeneous quaternary ammonium halide catalyzed alkyl halide exchange¹ never had been systematically explored, we used this process to develop a rapid, simple, solvent-free method for bromidechloride, chloride-iodide, and bromide-iodide exchange and applied it to high-yield syntheses of certain α,ω -hetero dihalides.² The ability to achieve, in particular, reversible chloride-iodide exchange encouraged us to attempt the unprecedented homogeneous conversion of alkyl halides to alkyl sulfonates; some initial successes are reported herein. Although, historically, the major role of sulfonate ions has been as leaving groups in S_N1 or S_N2 type processes, Zefirov noted recently³ that nucleophilicity scales such as the Swain-Scott scale "completely ignore the nucleophilic properties of ... such a typical nucleofuge as the ptoluenesulfonate ion". Indeed, Kevill4 has demonstrated the ability of arenesulfonate ions (as tetrabutylammonium salts) to react in S_N2 fashion with trimethyl- and triethyloxonium ion, methyl triflate, and methyl perchlorate, and MacDonald has reported oxidatively assisted displacement of iodide by tosylate.⁵ However, unassisted S_N2 type displacement of halide ions by sulfonate ions has not been previously demonstrated. Synthetically, alkyl sulfonates usually are made from the corresponding alcohols or from halides through the agency of silver sulfonates.6 In our approach to halide-sulfonate exchange, two observations from Cl-I exchange were used: High temperatures were needed to achieve practical rates (>160 °C for Cl-I), and R'X in eq 1 had to be selectively distilled out $$RX + R'OTs \xrightarrow{\text{catalyst}} ROTs + R'X$$ $$X = Cl, Br, I$$ (1) to drive the reaction forward. Cheaply available methyl tosylate allowed both of these conditions to be met. In the first experiment (eq 2), we were pleased to find that the reaction could be pushed essentially to completion (disappearance of CH₃OTs) in 2 h. Also, high chemoselec- ClCH₂CH₂Br bp 106 °C + CH₃OTs $$\xrightarrow{Bu_4N^+Br^-}$$ $\xrightarrow{135 \text{ °C}}$ ClCH₂CH₂OTs + CH₃Br (2) bp 153 °C (0.3 mm) + bp 4 °C tivity was indicated by the near absence of bromoethyl tosylate and dimethylene ditosylate: 97% pure 2-chloroethyl tosylate was isolated in 68% yield (not optimized). Rough thermal comparison with Cl-I exchange conditions suggests that displacement of bromide by tosylate is relatively facile. The above success led us to attempt benzenesulfonatechloride exchange (eq 3); ¹H NMR analysis indicated ca. 30% conversion under the conditions shown, but reaction mixture darkening and deceleration of gas evolution made it appear likely that catalyst decomposition was occurring. Workup gave a 23% isolated yield of 6-(chlorohexyl)-1benzenesulfonate. A simple primary alkyl chloride thus can be replaced, but more severe conditions (and possibly more catalyst) are required, as expected. On the other hand, sulfonate-iodide exchange was anticipated to occur readily, and we were particularly interested in selective conversion of the now economically available chloroiodomethane² to chloromethyl tosylate; this simple compound has not been reported previously. The reaction indicated in eq 4 therefore was attempted. $$ClCH_{2}I + CH_{3}OTs \xrightarrow{Bu_{4}N^{+}Br^{-}} ClCH_{2}OTs + CH_{3}I$$ (4) However, it was found that, under the conditions used, ClCH₂OTs was transformed into CH₂(OTs)₂ faster than it was being formed (eq 5). Because ClCH₂OTs is the first known example of an α -tosyloxy halide, this behavior was not entirely predictable, but it is consistent with reports that α -alkoxy and α -acyloxy substituents greatly increase halide nucleofugality.⁷ It is known also that $$\alpha$$ -halides $ClCH_2OTs + CH_3OTs \xrightarrow{Bu_4N^+OTs^-}$ TsOCH₂OTs + CH₃Cl (5) greatly decrease leaving-group nucleofugality;8 the iodide in ClCH₂I therefore is less reactive than is an ordinary primary alkyl iodide. The known, stable CH₂(OTs)₂^{6a} readily crystallizes out of the reaction mixture; originally made by reaction of CH₂I₂ and AgOTs, and rarely studied since,⁹ it now can (8) Hine, J.; Thomas, C. H.; Ehrenson, S. J. J. Am. Chem. Soc. 1955, 77, 3886. ^{(1) (}a) Schwesinger, R.; Fritz, H.; Prinzbach, H. Chem. Ber. 1979, 112, 3318. (b) Sasson, Y.; Yonovich-Weiss, M. J. Mol. Catal. 1981, 10, 357. (c) Bidd, I.; Whiting, M. C. Tetrahedron Lett. 1984, 25, 5949. (2) Hahn, R. C. J. Org. Chem. 1988, 53, 1331. ⁽³⁾ Zefirov, N. S.; Koz'min, A. S. Acc. Chem. Res. 1985, 18, 154. (4) (a) Kevill, D. N.; Lin, G. M. L.; Bahari, M. S. J. Chem. Soc. Perkin Trans. 2 1981, 49 and references therein. (b) Kevill, D. N.; Anderson, S. W.; Fujimoto, E. K. In Nucleophilicity; Harris, J. M., McManus, S. P., Eds.; Advanced Chemistry Series 215; American Chemical Society: Washington, DC, 1987; Chapter 19. (5) MacDonald, T. L.; Narasimhan, N. J.Org. Chem. 1985, 50, 5000. (6) (a) Emmons, W. D.; Ferris, A. F. J. Am. Chem. Soc. 1953, 75, 2257. ⁽b) Hoffmann, H. M. R. J. Chem. Soc. 1965, 1251. ⁽⁷⁾ Streitwieser, A., Jr. Chem. Rev. 1956, 56, 571. ⁽⁹⁾ Since 1953, the literature citations for CH2(OTs)2 are (a) Gerdil, R. Helv. Chim. Acta 1973, 56, 1859. (b) Berke, H.; Weiler, G. Angew. Chem., Int. Ed. Engl. 1982, 21, 150. (c) Motyl, K. M.; Norton, J. R.; Schauer, C. K.; Anderson, O. P. J. Am. Chem. Soc. 1982, 104, 7325. (d) Yang, L. S.; Engler, T. A.; Shechter, H. J. Chem. Soc., Chem. Commun. 1983, 866. (e) Krakowiak, K.; Kotelko, B. Pol. J. Chem. 1983, 57, 597; Chem. Abstr. 1984, 101, 130675. be prepared easily and cheaply on any scale. Chloromethyl tosylate is easily separated from $CH_2(OTs)_2$ by vacuum distillation; at 1 atm and 25 °C it is an essentially non-volatile liquid, stable to air, light, and moisture. It can be prepared also from $CH_2(OTs)_2$ by reaction with lithium chloride; the above-noted α -halide effect allows the reaction to be stopped after complete conversion of $CH_2(OTs)_2$, with no detectable formation of dichloromethane (eq 6). $$TsOCH_2OTs + MX \xrightarrow{acetone} XCH_2OTs + MOTs$$ (6) M = Li, Na; X = Cl, Br, I In similar fashion, $CH_2(OTs)_2$ is converted rapidly and nearly quantitiatively to $BrCH_2OTs$ or ICH_2OTs by reaction with lithium bromide or sodium iodide, respectively (eq 6). In all of these reactions of $CH_2(OTs)_2$, we estimate displacement of the first tosylate group to occur at least 10^3 times faster than the second one. $BrCH_2OTs$ and ICH_2OTs also are nonvolatile liquids; ICH_2OTs is somewhat light-sensitive. All of these halomethyl tosylates have been handled with great care to avoid exposure or contact, in view of their expected functional similarities to known carcinogens. The halide–sulfonate exchange methodology described herein is a novel, silver-free, acid-free route to primary sulfonates, including ω -haloalkyl sulfonates. Some of these are derivatives of alcohols that either are not readily available or simply do not exist as stable entities (e.g. the halomethanols). It is also a very convenient route to large-scale synthesis of quaternary ammonium (and presumably phosphonium) sulfonates, which already see use as supporting electrolytes and which now are under study as stoichiometric nucleophilic reagents. The previously unknown halomethyl sulfonates, as heterodifunctional methanes and novel formaldehye equivalents, can be electrophiles, nucleophile sources, radical sources, carbenoid sources, and precursors to other novel difunctional methanes. Their properties and synthetic applications are under study. The methodology by which they have been obtained, homogeneous nucleophile exchange, has not reached its full scope; this also is under active investigation. ## **Experimental Section** Starting materials (97% or higher purity) usually were used without further purification; preparative procedures have not been optimized. Warning: Many of these compounds are known or suspected to be toxic and/or carcinogenic; geminal difunctional compounds are expected to be quite reactive. Previously known compounds were identified by comparison of boiling points/melting points and ¹H NMR spectra with literature data. New compounds were assigned structures on the basis of chemical origin, physical properties, NMR spectra, and elemental analyses. NMR spectra were recorded for CDCl₃ solutions on a GE QE-300 spectrometer. **2-Chloroethyl Tosylate.** The following conditions were used after an initial experiment with Amberlyst A-26 (chloride form) as the catalyst produced less than 10% conversion to the desired product before apparent catalyst breakdown occurred. 1-Bromo-2-chloroethane (28.6 g, 0.20 mol), methyl tosylate (28.0 g, 0.15 mol), and Bu₄NBr (2.2 g, ca. 2%) were heated together in a round-bottom flask fitted with a vigreux column. Vigorous bubbling occurred above 120 °C; after 2 h, the pot temperature was 135 °C, and bubbling had nearly ceased. Analysis (¹H NMR) showed a trace of CH₃OTs (δ 3.75, s), strong triplets at δ 4.25 and 3.67 (perfect fit for ClCH₂CH₂OTs), residual peaks for Br(CH₂)₂Cl, and small triplets (ca. 5%) at δ 4.29 and 3.49, assigned to BrCH₂CH₂OTs. The mixture was taken up in Et₂O (100 mL), washed with water (3 \times 100 mL) and saturated brine, dried (MgSO₄), and stripped of solvent. The residue still contained Bu₄NBr, which was removed by column chromatography on SiO₂ (Et₂O). Solvent removal and careful distillation of the residue gave 24 g (68%) of ClCH₂CH₁OTs (containing ca. 3% of BrCH₂CH₂OTs), bp 130–135 °C (0.2 mmHg) [lit. 11 bp 153 °C (0.3 mm)]. 6-Chlorohexyl 1-Benzenesulfonate. After an initial experiment showed that complete sulfonate decomposition occurred at 190 °C, the following procedure was used: 1,6-Dichlorohexane (15.5 g, 0.10 mol), CH₃O₃SPh (17.2 g, 0.10 mol), and Bu₄NBr (2.0 g, ca. 3%) were heated together to 170 °C over 1.5 h; heating was stopped when the pot began to darken (very slow gas evolution). Analysis (1H NMR) showed triplets for ClCH₂ (3.55) and PhSO₃CH₂ (4.06) in a ca. 4:1 ratio, corresponding to a dichloride-chlorohexyl sulfonate ratio of ca. 3:2. The crude product mixture was taken up in Et₂O, washed with water $(4 \times 75 \text{ mL})$, and dried over K2CO3. Solvent removal at 1 atm, Cl(CH2)6Cl removal at 7 mm (bp 60 °C), CH₃O₃SPh removal at 0.7 mm (bp 85 °C), and Kugelrohr distillation of the residue afforded 6.5 g (23%) of the chlorohexyl sulfonate as a nearly colorless oil, bp 150–160 °C (0.2 mm): ¹H NMR δ 1.35 (m, 4 H), 1.68 (m, J = 7.3Hz, 4 H), 3.48 (t, J = 6.6 Hz, 2 H, CH_2Cl), 4.05 (t, J = 6.65 Hz, 2 H, CH_2O_3SPh), 7.56 (t, J = 7.8 Hz, $\bar{2}$ H), 7.67 (t, J = 7.3 Hz, 1 H), 7.91 (d, J = 7.8 Hz, 2 H); ¹³C NMR δ 24.49, 25.96, 28.47, 32.07, 44.67, 70.52, 127.61, 129.12, 133.61, 135.89. Anal. Calcd for C₁₂H₁₇ClO₃S: C, 52.07; H, 6.19. Found: C, 53.60; H, 6.20. Reaction of Chloroiodomethane and Methyl Tosylate; Methylene Ditosylate and Chloromethyl Tosylate. CH₃OTs (41.0 g, 0.22 mol) and Bu₄NBr (4.0 g, ca. 0.012 mol) were heated together to 85 °C and then cooled to 40 °C. ClCH₂I (35.2 g, 0.20 mol) was added, and the yellow-orange mixture was heated to 137 °C over 2 h; 1.4 mL of distillate (bp 36 °C; CH₃I) was collected. A 1H NMR spectrum of the mixture showed peaks for CH3I (δ 2.17), CH₃OTs (strongest), ClCH₂I (4.97; next strongest), ClCH₂OTs, and CH₂(OTs)₂, the last two in ca. 2:1 ratio. Absent were peaks for CH₃Br, CH₂I₂, CH₂Cl₂, and ICH₂OTs; all of these had appeared in a previous mixture heated to higher temperatures. Heating of the current mixture 1 h more, to 141 °C, yielded 1.4 mL more of the distillate; the mixture turned dark cherry red. NMR analysis: CH₃OTs was gone; appreciable ClCH₂I remained, and the ClCH2OTs:CH2(OTs)2 ratio had changed to <1:2; traces of CH₂I₂, CH₂Cl₂, and ICH₂OTs were present. The pot material solidified. Crystallization from Et₂O gave a tan solid, which contained traces of quaternary salt; solution in hot benzene and flash chromatography gave a violet-pink solution, which was decolorized with aqueous NaHSO3. Cooling deposited colorless crystals, which retained benzene tenaciously; overnight pumping at 0.1 mm removed 20 g of solvent to leave 15 g of CH₂(OTs)₂, mp 116-117 °C (lit.6a mp 117 °C). Concentration of the benzene mother liquor yielded a second crop (4 g). Samples of $\mathrm{CH}_2(\mathrm{OTs})_2$ stored at room temperature in air for months show no detectable decomposition: ${}^{1}\overline{H}$ NMR δ 2.46 (s, 6 H), 5.82 (s, 2 H), 7.27 (d, 4 H), 7.61 (d, 4 H); ¹³C NMR δ 21.63, 87.89 (CH₂), 127.86, 129.71, 133.21, 145.35. Bu₄N⁺OTs⁻, the only quaternary salt seen in the product mixture, showed 1H NMR absorptions at δ 1.12 (t, CH_3CH_2), 1.49 (clean sext, γ - CH_2), 1.69 (broad quint, β - CH_2), 2.32 (s, CH₃Ar; ca. 0.15 δ upfield from covalent tosylates), 3.32 (broad t, α -CH₂), 7.14 (d, Ar (H's ortho to CH₃), and 7.79 (d, H's meta to CH₃). The filtrate from the Et₂O crystallization contained ca. 3:1 ClCH₂OTs/CH₂(OTs)₂; on standing, more CH₂(OTs)₂ deposited. This was filtered off and washed with Et2O, and the washings were combined with the filtrate. The precipitate afforded another 4 g of CH₂(OTs)₂ (total 23 g, 65%). The filtrate, on flash chromatography (SiO₂, Et₂O), NaHSO₃ decolorization, solvent removal, and distillation, gave 7.95 g (18%) of ClCH₂OTs as a nearly colorless oil, bp 99–101 °C (0.4 mmHg): 1 H NMR δ 2.46 (s, 3 H), 5.77 (s, 2 H), 7.36 (d, 2 H), 7.83 (d, 2 H); ¹³C NMR δ 21.62, 73.85 (CH₂), 128.12, 129.89, 133.33, 145.69. Anal. Calcd for C₈H₉ClO₃S: C, 43.54; H, 4.11. Found: C, 43.63; H, 3.95. ⁽¹⁰⁾ The CH₂ ¹H chemical shifts of this family of compounds comprise an anomalous series. The order is $ClCH_2OTs < CH_2(OTs)_2 < BrCH_2OTs < ICH_2OTs ($ 5.77, 5.82, 5.84, and 5.90, respectively), reversing the order seen for the mono- and dihalomethanes. The CH₂ ¹³C shifts are more normal ($ 73.85, 87.89, 61.27, and 32.51 for the same order).$ ⁽¹¹⁾ Catalog Handbook of Fine Chemicals; Aldrich: Milwaukee, WI, 1988-1989; p 342. Reaction of Methylene Ditosylate and Lithium Chloride. To a solution of $CH_2(OTs)_2$ (1.07 g, 3.00 mmol) in acetone (4 mL) was added a solution of LiCl (191 mg, 4.50 mmol) in methanol. After the resulting solution had been refluxed 10 h, it was poured into Et_2O -water (25 mL each); the organic layer was washed with water (25 mL) and saturated aqueous NaCl (25 mL), dried (MgSO₄), and filtered. The filtrate was stripped of solvent to leave 544 mg (98%) of essentially pure ClCH₂OTs. 544 mg (98%) of essentially pure ClCH₂OTs. Bromomethyl Tosylate. To a solution of CH₂(OTs)₂ (1.068 g, 3.00 mmol) in acetone (2.5 mL) was added a solution of LiBr (391 mg, 4.50 mmol) in acetone (1.5 mL). On heating to reflux (2 min), the solution suddenly filled with colorless crystals (LiOTs). Analysis (¹H NMR) indicated ca. 90% conversion to BrCH₂OTs. On standing overnight (25 °C), conversion was 100%; no CH₂(OTs)₂ or CH₂Br₂ was detectable. Addition of CH₂Cl₂ to precipitate Li salts, filtration, and removal of solvent left 780 mg (>98%) of pale yellow oil. An analytical sample, mp <20 °C, was obtained by recrystallization from MeOH (0–5 °C) or by distillation (bp 112–114 °C, 0.4 mmHg): ¹H NMR δ 2.46 (s, 3 H), 5.84 (s, 2 H), 7.37 (d, 2 H), and 7.83 (d, 2 H); ¹³C NMR δ 21.61, 61.27, 128.21, 129.88, 132.75, 145.81. Anal. Calcd for C₈H₉BrO₃S: C, 36.24; H, 3.42. Found: C, 37.62; H, 3.38. Iodomethyl Tosylate. To a solution of CH₂(OTs)₂ (712 mg. 2.0 mmol) in acetone (4.5 mL) was added a solution of NaI (450 mg, 3.0 mmol) in acetone (1.5 mL). On warming to 50 °C (5 min), the pale yellow solution was filled with colorless, heavy crystals. After being allowed to stand for 0.5 h, the mixture was poured into a mixture of Et₂O and water (30 mL ea), decolorized with a pinch of NaHSO₃, washed with water and saturated brine (30 mL ea), and dried in the dark over MgSO₄. Filtration and solvent removal left 635 mg (>100%) of pale yellow oil. Analysis (1H NMR) showed ca. 10% of unreacted CH2(OTs)2 remaining; Kugelrohr distillation (115–120 °C, 0.2 mmHg) yielded 455 mg (73%) of ICH₂OTs as a nearly colorless oil: ¹H NMR δ 2.46 (s, 3 H), 5.90 (s, 2 H), 7.38 (d, 2 H), and 7.81 (d, 2 H); 13 H NMR δ 21.67. 32.51, 128.37, 129.93, 132.13, 145.86. A refrigerated sample appeared unchanged (NMR) after several months. Anal. Calcd for C₈H₉IO₃S: C, 30.78; H, 2.91. Found: C, 31.18; H, 2.84. Acknowledgment. We thank the Chemistry Department, Syracuse University, and the College of Health Related Professions, SUNY Health Science Center, for financial support. ## Communications Versatile New Approach to the Synthesis of Monosubstituted and Bicyclic Piperazine-2,5-diones: Unusual in Situ Generation and Enolate Addition to a Cumulene Summary: Dichloroacetyl chloride condenses with glycinamide 9 to furnish the versatile precursor 10, which cyclizes to the mono (ether) substituted piperazinediones 11 upon treatment with alkoxides. A new intramolecular enolate C-C bond-forming cyclization from these derivatives furnishes three new bicyclo[n.2.2]piperazinediones 14, 17, and 18. Sir: Bicyclo[n.2.2]piperazinediones 1 have proven to be valuable, versatile templates from which the total synthesis of bicyclomycin¹ (2) and a variety of interesting analogues² have been prepared. A primary synthetic difficulty that has been encountered in constructing such systems is the incorporation of the branched β,γ -unsaturated amino acid residue. While this problem has been solved in various ways,³ the multistep pathways that have been developed to install this functionality preclude convenient access to reasonable quantities of these compounds for further elaboration and study. Additionally, the most successful strategies¹ have employed an intramolecular O–C bond construction to form the bicyclic ring system (eq 1). Reported herein is an entirely new approach to this class of compounds that features intramolecular C-C bond-forming cyclization reactions (eq 2). Dichloroacetyl chloride efficiently acylates glycinamide 9 to afford the dichloride 10⁴ (mp 105–106 °C, 88% yield). Condensation of 10 with a variety of alcohols (Table I) in the presence of base furnishes the piperazinediones 11.⁴ This technique gives access to the deceptively simple yet difficult to prepare monoethers of piperazinediones 11. For example, selective monobromination of various glycine anhydride R_1 R_1 R_1 R_2 R_1 R_2 R_3 R_4 R_4 R_5 R_6 R_7 R_8 R_8 R_8 R_8 R_8 R_9 ^{(1) (}a) Williams, R. M.; Armstrong, R. W.; Dung, J.-S. J. Am. Chem. Soc. 1984, 106, 5748. (b) 1985, 107, 3253. (c) Yamaura, M.; Suzuki, T.; Hashimoto, H.; Yoshimura, J.; Shin, C. Chem. Lett. 1984, 1547. (d) Yoshimura, J.; Yamaura, M.; Suzuki, T.; Hashimoto, H. Chem. Lett. 1984, 2157. (e) Dawson, I. M; Gregory, J. A.; Herbert, R. B.; Sammes, P. J. Chem. Soc., Chem. Commun. 1986, 620. (f) Nakatsuka, S.; Yamada, K.; Yoshida, K.; Asano, O.; Murakami, Y.; Goto, T. Tetrahedron Lett. 1983, 24, 5627. ^{1983, 24, 5627. (2) (}a) Williams, R. M.; Armstrong, R. W.; Dung, J.-S. J. Med. Chem. 1985, 28, 733. (b) Sera, A.; Itoh, K.; Yamada, H.; Aoki, R. Heterocycles 1984, 22, 713. (c) Fukuyama, T.; Robins, B. D.; Sachleben, R. A. Tetrahedron Lett. 1981, 22, 4155. (d) Nakatsuka, S.; Yoshida, K.; Goto, T. Ibid. 1981, 22, 4155. ⁽³⁾ For a review, see: Williams, R. M.; Durham, C. Chem. Rev. 1988, 88, 511. ⁽⁴⁾ All new compounds exhibited satisfactory spectroscopic and analytical data consistent with the assigned structures.